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NEW FACTORIZABLE DISCRETIZATIONS FOR THE EULER EQUATIONS

BORIS DISKIN* AND JAMES L. THOMAS t

Abstract. A multigrid method is defined as having textbook multigrid emciency (TME) if solutions to

the governing system of equations are attained in a computational work that is a small (less than 10) multiple

of the operation count in one target-grid residual evaluation. A way to achieve TME for the Euler and Navier-

Stokes equations is to apply the distributed relaxation method thereby separating the elliptic and hyperbolic

partitions of the equations. Design of a distributed relaxation scheme can be significantly simplified if the

target discretization possesses two properties: (1) factorizability and (2) consistent approximations for the

separate factors. The first property implies that the discrete system determinant can be represented as a

product of discrete factors, each of them approximating a corresponding factor of the determinant of the

differential equations. The second property requires that the discrete factors reflect the physical anisotropies,

be stable, and be easily solvable.

In this paper, discrete schemes for the nonconservative Euler equations possessing properties (1) and (2)

have been derived and analyzed. The accuracy of these scheme has been tested for subsonic flow regimes

and is comparable with the accuracy of standard schemes. TME has been demonstrated in solving fully

subsonic quasi-one-dimensional flow in a convergent/divergent channel.

Key words. Euler equations, textbook multigrid efficiency, distributed relaxation, factorizable schemes

Subject classification. Applied and Numerical Mathematics

1. Introduction. Full multigrid (FMG) algorithms [3, 4, 13, 22, 26, 27] are the fastest solvers for

elliptic problems. These algorithms can solve a general discretized elliptic problem to the discretization

accuracy in a computational work that is a small (less than 10) multiple of the operation count in one

target-grid residual evaluation. Such efficiency is known as textbook multigrid efficiency (TME) [5, 6].

Extending TME to solutions of the Navier-Stokes equations is a challenging task because the Navier-Stokes

equations form a system of coupled nonlinear equations that is not fully elliptic, even for fully subsonic flow,

but contains hyperbolic partitions. TME for the Navier-Stokes simulations can be achieved if the different

factors contributing to the system could be separated and treated optimally, e.g., by multigrid for elliptic

factors and by downstream marching for hyperbolic factors. One of the ways to separate the factors is the

distributed relaxation method proposed in [3, 4]. The general framework for achieving TME in large-scale

computational fluid dynamics (CFD) applications has been discussed in [9, 25].

The major difficulty in efficiently solving the Navier-Stokes equations is encountered with the inviscid

(Euler) subset; thus we restrict ourselves to the Euler equations here. The approach to the solution of

the Euler equations motivating this paper is based on an FMG algorithm with multigrid cycles employing

distributed relaxation. It is envisioned that the FMG-1 algorithm (an FMG algorithm with one multigrid

cycle per level) will provide solutions with algebraic error below the level of the discretization error. Another

useful characteristic of the solution process is the possibility to rapidly converge residuals to the machine zero.
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The latter property is not necessary for achieving TME, but it is highly favored in practical applications.

The distributed relaxation approach relies on a principal linearization of the governing system of non-

linear equations. The principal linearization is derived from the full Newton linearization by removing some

unimportant (subprincipal) terms. The principal terms of a linear scalar equation are the terms that make

major contributions to the residual per a unit change in the solution variable. The principal terms thus

generally depend on the scale, or mesh size, of interest. For example, the discretized highest derivative terms

are principal on grids with small enough mesh size. For a discretized system of differential equations, the

principal terms are those that contribute to the principal terms of the determinant of the matrix operator.

Design of a distributed relaxation scheme for the Euler equations can be significantly simplified if the

target discretization possesses two properties:

(1) The principal linearization of the target discrete system is factorizable [4, 5, 6, 19, 20], i.e., the

discrete system determinant can be represented as a product of discrete scalar factors, each of them

approximating a corresponding factor of the determinant of the differential equations.

(2) The obtained scalar factor discretizations reflect the physical anisotropies and are stable and easily

solvable.

The main subject of this paper is derivation of new discrete schemes for the nonconservative Euler equations

possessing properties (1) and (2). Corresponding conservative discrete schemes and distributed relaxation

for them have been considered in [15].

Properties (1) and (2) are automatically obtained with staggered-grid discretizations for incompressible

and slightly compressible flow. Textbook efficient multigrid solvers employing factorizable staggered-grid dis-

cretizations of the nonconservative formulations and distributed relaxation have already been demonstrated

for high-Reynolds-number viscous incompressible [11, 24] and subsonic compressible [23] flow regimes.

Factorizable schemes for the conservative Euler equations on collocated grids have been derived and

implemented in [17, 18, 19, 20, 21]. The multigrid solvers in these references employed Collective Gauss-

Seidel rather than distributed relaxation. The subsonic-flow convergence rates observed in multigrid V cycles

were quite fast (about 0.3 per cycle), far overcoming the theoretical limit for nonfactorizable schemes, and

were only slightly grid dependent. However, these rates are still not fast enough to guarantee convergence

in an FMG-1 algorithm. The rates also deteriorate somewhat in transonic and supersonic computations and

for grids with high aspect ratios. These facts emphasize the need to employ distributed relaxation.

This paper explores new collocated-grid schemes for the compressible Euler equations that satisfy prop-

erties (1) and (2) in multiple dimensions. A typical difficulty associated with this type of scheme is a

poor measure of h-ellipticity (stability) in the discrete approximation for the full-potential factor of the

system determinant. By definition (see [2, 4, 26]), a discrete scalar (not necessarily elliptic) operator

L[n] possesses a good measure of h-ellipticity, if the absolute value of its symbol IL(w)l is well sepa-

rated from zero for all high-frequency Fourier modes. The operator symbol is defined as the operator

response on a discrete Fourier mode: Lie i(W'j)] = L(w)e i(W'j), where j = (jx,j_,j_) are the grid indexes

and w = (wx,w_,w_),O __ Iw_l,lw_l, Iw_l __ 7_ are normalized Fourier frequencies. For elliptic operators,

high-frequency Fourier modes are the modes satisfying max(Iw_ I, Iw_l, Iw_l) _ _/2; for nonelliptic operators,

high-frequency Fourier modes are those oscillating in the characteristic directions.

Lack of h-ellipticity often implies inefficient relaxation (i.e., a poor smoothing factor for some high-

frequency error components) and slow convergence rates in multigrid cycles. Several approaches to overcome

the difficulty (mainly in applications to incompressible flow equations) have been proposed (e.g., [1, 10]).

Some of the approaches are associated with introduction of additional terms increasing the measure of



h-ellipticity, others with averaging spurious oscillations.

The factorizable schemes for multidimensional compressible flow equations proposed in this paper in-

clude a mechanism to improve the h-ellipticity measure by obtaining any desired discretizations for the

full-potential factor. TME with an FMG solver employing the distributed relaxation method has been

demonstrated for two schemes approximating the Euler equations for a quasi-one-dimensional subsonic flow

in a convergent/divergent channel.

The paper is organized as follows: The Euler equations for inviscid compressible flow problems are de-

fined in Section 2. The idea of distributed relaxation is briefly explained in Section 3. Section 4 presents the

derivation of the new factorizable schemes for the Euler equations. A model problem, the one-dimensional

subsonic Euler equations, is presented in Section 5 together with a comparative analysis of linear discretiza-

tion schemes. Description of the multigrid solver ingredients is in Section 6 followed by results of nonlinear

numerical tests with a subsonic flow in a convergent/divergent channel reported in Section 7. Section 8

contains concluding remarks.

2. Euler Equations. The steady-state three-dimensional Euler system of compressible flow equations

R(q) - {

can be written as

(2.1)

1

uOxu + vO_u + wO_u + _Oxp = 0,
1

uO_v + vO_v + wO_v + FO_p = 0,
1

uO_w + vO_w + wO_w + _O_p = 0,

pc20_u + pc2 0_v + pc20_w + uO_p + vO_p + wO_p = 0,

_0 x U C2 C2+ TO_v + TO_w + uO_e + vO_e + wO_e = O.

where the primitive variables, q = (u, v, w,p, e) T, represent velocity, pressure, and internal energy, and are

related to the density, p, and the speed of sound, c, through the following equations:

(2.2) P= (7 - 1)pc,

(2.3) c2 = "yp/p,

where 7 is the ratio of specific heats.

In an iterative (quasi-Newton) procedure, the correction 5q = qn+l _ qn, where n is an iteration counter,

can be computed from the equation

(2.4) L 5q = -R(q),

where L is the principal linearization of the operator R(q). Thus,

(2.5) L =

Q 0 0 170_

0 Q 0 10
p Y

1

0 0 Q pO_

pc 20_ pc 20_ pc 20_ Q

cZO 2 20 0
_ T 0_ T _

0

0

0 ,

0

Q

where Q = fi0x + _0_ + u_0_ = (ft. V), and the coefficients fi = (fi, _, _), p, and c2 are evaluated from the

approximation qn and, for the current iteration, are considered as constants unrelated to the target primitive



variables.ThedeterminantofthematrixoperatorL is

(2.6) Q3 [Q2 _ c2A],

where /_ is the Laplace operator. The convection operators, Q, and the full-potential operator, Q2 _ c2A,

represent hyperbolic and elliptic partitions of the Euler equations.

3. Distributed Relaxation. The distributed relaxation method for the Euler equations replaces 6q

in (2.4) by M 6w, where

(3.1) M=

1 0

0 1

0 0

0 0

0 0

1 00 - 7Ox

0 -18 0
p Y

1 1 0- _0_

0 Q 0

0 0 1

so that the resulting matrix L M becomes lower triangular, as

(3.2) LM=

Q o o o o

o Q o o o

o o Q o o

pc20x pc20_ pc20_ O2-c2A 0

C20 _0 _0 _ A Q
_/ x _/ y _/ z _/p

and

(3.3) L M 6w = -R(q).

The main diagonal of L M is composed of the factors of the matrix L determinant. The distributed relaxation

approach yields fast convergence if the constituent scalar diagonal operators in L M are solved with efficient

methods.

An efficient solver for the convection factor, Q, can be based on downstream marching, with additional

special procedures for recirculating flows [11, 12, 16, 28]. The full-potential factor, Q2 _c2A, is an operator of

variable type, and its solution requires different procedures in subsonic, transonic, and supersonic regions. In

subsonic regions, the full-potential operator is uniformly elliptic; therefore standard multigrid methods yield

optimal efficiency. When the Mach number approaches unity, the operator becomes increasingly anisotropic

and, because some smooth error components cannot be approximated adequately on coarse grids, classical

multigrid methods severely degrade. In supersonic regions, the full-potential operator is uniformly hyperbolic

with the stream direction serving as the time-like direction. In this region, an efficient solver can be obtained

with a downstream marching method. However, downstream marching becomes problematic when the

Mach number drops towards unity, because marching steps allowed by the stability condition are too short.

Thus, a special procedure is required to provide an efficient solution for transonic regions. A possible

procedure [7, 8, 14] is based on piecewise semicoarsening and some rules for adding dissipation at the coarse

grid levels.

4. Discrete Equations. Having in mind the distributed relaxation procedure outlined in the previous

Section 3, one would like to design a discretization for nonlinear operator R(q) of (2.1) that has the discrete

principal linearization operator, Lh, satisfying properties (1) and (2) listed in Section 1. For nonconservative



formulations,the discretizationof the nonlinearoperatordirectlyfollowsLh. Derivationof conservative
discretizationschemescorrespondingto agivendiscreteprincipal-linearizationoperatorhasbeendiscussed
in [15].

In thissection,weconsidertwofactorizablediscretizationsforthematrixoperatorL of (2.5):thebasic
h h

discretization, Lbasic, and an improved discretization, Lh. The basic collocated-grid discretization Lbasi c of

the matrix operator L is defined as

(4.1) hLbasi c ----

10hOh 0 0 _ x

1 oh0 O h 0 _

0 0 Qh 1 oh

pc pc20h pc 0
c20h c20 h _0 h 0
7 x 7 y 7 z

0

0

0 ,

0

0 h

where the discrete derivatives, Oh , Oh , Oh , in all off-diagonal positions are the second-order accurate central-

differencing approximation. All the diagonal terms, Qh, except O h in the fourth equation, are discretized

with the same second-order accurate upwind (or upwind-biased) discretization scheme. In the subsonic

regime (lfil 2 = _2 + 02 + _2 < c2), the term O h is discretized with a second-order accurate downwind (or

downwind-biased) discretization.
h

The determinant of the matrix operator Lbasi c is given by

(4.2) (Qh) 3 EQh(_)h - c2A2h] ,

where /_2h is a wide (with mesh spacing 2h) discretization of the Laplace operator. The full-potential

operator approximation appearing in the brackets has two major drawbacks:

(1)

(2)

The approximation is not h-elliptic, i.e., it admits spurious oscillatory solutions for the discrete

homogeneous equation.

For near-sonic regimes (Mach number M = Ifil/c ,,_ 1), the discrete operator stencil does not reflect

the physical anisotropies of the differential full-potential operator. The discrete operator exhibits

very strong coupling in the streamwise direction, while the differential operator has strong coupling

only in the cross-stream directions.

An improved discrete full-potential operator can be obtained if the discretization O h is changed to

O h + ,,4h. Then the discrete full-potential operator in (4.2) becomes

(4.3) _h = QhAh + Qh_)h _ C2A2h.

If the operator flh is second-order small (proportional to h2), the overall second-order discretization accuracy

()1is not compromised. The choice of .Ah used here is .Ah = Qh "_h,'_h = ._h __ (QhOh __ C2/_2h), where

3ch is a desired approximation for the full-potential factor. We do not discuss in this paper the optimal

discretization for the multidimensional subsonic full-potential operator. Note only that it is possible to

construct a discretization that satisfies the following properties:

(1) For subsonic Mach numbers, the discretization is h-elliptic; in the limit of the zero Mach number, it

is dominated by the narrow (with mesh spacing h) h-elliptic Laplace operator.

(2) For the Mach number approaching unity, the discretization correctly reflects the physical anisotropies

and tends to the optimal discretization for the sonic-flow full-potential operator (see [7, 8, 14]).

(3) For supersonic Mach numbers, the discretization becomes upwind (or upwind-biased) and can be

solved by marching.



Theoperator_4h is a nonlocal operator acting on ph and can be

variable _h = Ahph and a new discrete equation Qh_h = /ghph. Thus,
h

becomes qh = (uh, vh, wh, _h,ph, _h)T. The discrete operator Lbasi c is

(4.4) Lh =

Qh 0 0 0 10h
p x

1 0h0 Qh 0 0 _

0 0 Qh 0 10h
p z

0 0 0 Qh __gh

pc 20_ pc 20_ pc 20_ 1 O h

c_Oh _2Oh ___Oh 0 0
x _- y _ z

The corresponding distribution matrix, Mh, is defined as

introduced through a new auxiliary

the new vector of discrete unknowns

changed to Lh, such that

0

0

0

0

0

Qh

(4.5) Mh=

10h1 0 0 0 -_ x 0
10h 00 1 0 0 -_
1 0h0 0 1 0 -_ _ 0

0 0 0 1 7) h 0

0 0 0 0 Qh 0

0 0 0 0 0 1

so that the resulting matrix Lh Mh becomes lower triangular as

(4.6)

Qh

0

0
Lh Mh =

0

pc2 0_

_2Oh
x

0 0 0 0 0

Qh 0 0 0 0

0 Qh 0 0 0

0 0 Qh 0 0

pc2 0_ pc2 0_ 1 ._h 0

_ 0 h _ 0 h 0 _ c_ A 2h Qh
y _ z _p

5. One-Dimensional Model Problem. The set of the quasi-one-dimensional nonconservative Euler

equations is given by

1

uO_u + _O_p = 0,

(5.1) pc20_u + uO_p = -7pu_-,

(7- 1)eOxu + uO_e = -(7- 1)cu_-,

where a(x) is the area distribution. The principal linearization of the operator in (5.1), in the limit as h

tends to zero, is

(5.2)
_0 x 1 0 /

pc 20_ _0_ 0 ,

(7-1)_o_ o _o_

in which the coefficients fi, p, c, and _ are constants unrelated to the unknown functions (u,p, e). The third

equation is decoupled from the other equations. Thus, for the purpose of analysis, one can focus on the

system of two constant-coefficient equations

(5.3) L q = f,



where

(5.4) IJ = _0 x 1

pc 20x _tOx '

f = (fl, f2) T, and q = (u,p) T. For the subsonic flow regimes, a natural set of boundary conditions for this

model problem is u specified at the inflow boundary and p specified at the outflow boundary. With this set

of boundary conditions, the differential problem (5.3) is well posed.

The analysis presented in this section compares the exact differential and discrete solutions for u and p

obtained for the model problem (5.3). Let the exact solution of (5.3) defined on the interval x E [0, 1] be

,,,, z ,

Pexact Cp

where (_ is an arbitrary frequency. Then

L

The system (5.3) is subject to boundary conditions

(5.7) u(0) =

The distribution matrix M,

(5.s)

results in

(5.9)

ia.
pc2C_ + _Cp /

p(1) = Cpei%

(11)M = - pox
0 _Ox '

,M:( o).pc2 0x ?

The main diagonal of matrix LM is composed of the convection operator gcOxand the full-potential operator

.T = (_2 _ c2)Oxx" The one-dimensional problem is very specific for at least two reasons:

(1) The full-potential factor vanishes at the sonic speed (_ = c).

(2) The characteristics perfectly align with the grid.

Both these features disappear in multiple dimensions.

The corresponding discrete problem is defined on a uniform grid with mesh size h as

(5.10) Lh qh = fh,

h h h T
where L h is a discretization of L, and qj -- (uj,pj) and fh = (fl(jh), f2 (jh))T are discrete representations

of the solutions and source functions, respectively, and j = 0, 1, 2,..., N, N = 1/h. The general solution to

(5.10) can be sought as a combination of a particular solution and the general solution to the corresponding

homogeneous problem

(5.11) Lh qh _--0.

A particular solution can be found in the form

(5.12) (')h Upar __-- " "

qpar ---- h _ e_3 '
Ppar j



(5.13)

where w = ah is a normalized frequency, and Lh(_) is a generalized matrix symbol of the discrete operator Lh.

The entries of Lh(A) are generalized symbols of the discrete scalar operators composing Lh that are defined

as responses of these operators on the exponent function M. For example, the generalized symbol, 0c(A), of

the central second-order accurate difference approximation to the first derivative, 0% is 0%_ j = 0_(A)M,

0_(_) _- _(_-_).

The general solution, qhom , of the homogeneous system of equations (5.11) is a combination of linearly

independent characteristic solutions Zk = VkA_, where Ak are the roots of the characteristic polynomial

(5.14) det Lh(A) = 0.

(5.15)
?/'hhom )qh°m= phhom

=E ckzk(j)=E
j k k

The general solution of the discrete problem (5.10) is

(5.16)
( _t ) eiwJ

h : ECkZk(j)+
qh z qhom -k- qpar

k

Parameters Ck are chosen to satisfy a set of discrete boundary conditions. The discretization error function

is defined as

(5.17) qh h-- qexact,

where hqexact is a restriction of qexact (X) to the grid with the mesh size h.

Below, the discretization errors for four discrete factorizable schemes approximating (5.3) are compared:

Scheme # 1. The "basic" scheme of the (4.1) type.

Scheme # 2. The standard upwind discrete scheme.

Scheme # 3. The discrete scheme of the (4.4) type with the discretization for the full-potential

factor given as

(5.18)

(4)

where the discrete operators, 0 _ and 0 d, are second-order accurate upwind and downwind difference

approximations to the first derivative, respectively.

Scheme # 4. The discrete scheme of the (4.4) type with the discretization for the full-potential

factor given as

(5.19) _-h = (fi2 _c 2) 0h,

where the discrete operator 0h_ is a three-point central approximation to the second derivative.

All the schemes, except the standard upwind scheme (2), are factorizable in multiple dimensions. The

discrete boundary conditions for all the four schemes are overspecified, i.e., the discrete-solution values at

the boundary and, wherever necessary, outside of the target computational domain are specified from the

known exact solution (5.5).



5.1. Scheme# 1. Theone-dimensionalversionofthe"basic"collocated-griddiscretizationformatrix
operatorL of (5.3)isdefinedas

(5.20) L(h 1) q(1) _-- fh,

10 c ]
(5.21) L(hX) = u0_

pc20 _ _tOd "

Recall that the discrete derivatives, 0_, 0 _, and 0 d, are second-order accurate upwind, central, and downwind

difference approximations, respectively.

The generalized symbol for the operator L(h1) is defined as

(5.22)

where

L[1)(_) = ( _0_(_)
\ pc20_(_)

(5.23)

A particular solution to (5.20) is

(5.24)

where

(5.25)

1 1 1 1o_(_) = _ (_- 2_ + _),
1o_(_) = _ (-_ +2_- 1_2),
1 11o_(_) = _(l_-_x)

q(1) __--(?_(1) )e i_jpar _(1) '

?_(1) _tOe_(ei_)fl-- _ o c ( e _ _ ) _2
= _2o- (e_)o_(e_)-c2(o_(e_))2 '

_(1) --pc20_(ei_)fl+_tO_(ei_)f2
= _2o- (e_)o_(e_)-¢2(o_(e_))2 "

(5.26)

which corresponds to A1,2 = 1;

A set of linearly independent characteristic solutions Zk (j) = Vk A_ is given by

(1) (0)V 1 = and v2 = ,
0 1

(1)(5.27) v3 = p_o-(_3) ,
o_(a_)

which corresponds to A3 = 5_2-_2-4_" and

(1)(5.28) V 4 = __

o_(a_)

which corresponds to _4 -- 5u2--c2+4u_
3 fi2 A- c 2

The characteristic solutions Zk are normalized to satisfy max [Zk(j)[ = O(1) as h tends to zero. The
3

characteristic solutions Zl and z2 correspond to solutions of the target differential problem; the characteristic



solutionsz3andz4 arenumericalartifacts.Notethat in subsonicregimes,IA31= I)t41 = 1; this implies

existence of global discrete solutions that do not approximate solutions of the differential problem. These

spurious solutions are a source of instability of the discrete approximation (5.20). Details are given in

Appendix A. For stable approximations, characteristic solutions unrelated to the differential solutions should

be local, i.e., they should correspond to IA}I _ 1. The coefficients c} are computed from a 4×4 linear system

that arises after substituting the general solution into the boundary condition equations

(i) u0_ = c_,
/ \ [l_h l_h_3 h h 1 h

(ii) _-U 1 -- 2U 0 -'}- _-U__I)

± 1

_- _ [_t'2 -- _t'o] = fl(h),
_t 3 h h

(5.29) (iii) _-_-pc2fluhN--2 luhN-2]_''_-_(-_pN-1 +2PN--lph+I) = f2(1- h),

(iv) phN = Cpe i_,

where values_-I,_0,_N,_h _h _h and phN+1 are specifiedfrom the exact solution(5.5).

5.2. Scheme =_ 2. A one-dimensional versionof the standard upwind scheme formatrix operator L

of (5.3)isdefinedas

(5.30) L(h2)q(2) = fh,

(5.31) L(h_) = _+_ _0_ _+_0_ -"-_0_
+ "

The following four boundary conditions (two from the left and two from the right) are used by the

interior discretizations:

(i) 1 h 1 h 1 C _._ 1 C
2 UO _ _pcPO = 2 u 2pc P'

(ii) i n h ± 1 _h = 1 C + )
_'_--1 T _pcZ--1 2 u 2pc P

(5.32) (iii) 1o h 1 ._h 1 C 1__ C ( eiw(N+l),
2C_N+I -- _pcZN+l 2 u -- 2pc P

(iv) 1_ h -- 1 _nh 1 C 1 C _ e iwN.
2_N _pcZN _ u 27cpc P]

(5.33)

where

(5.34)

A particular solution can be found in the form

q(2) = (fi(2) )e iwjpar _(2) '

(5.35)

which corresponds to A1,2 = 1;

(5.36)

A set of linearly independent characteristic solutions _k(j) = "k;'_ is given by

(1) (o)Vl = and v2 = ,
0 1

(1)V 3 =

pc

10



which corresponds to As 1.= _, and

(5.3"/) V4= (An)-N ( 1)--pc

which corresponds to/_4 = 3. The characteristic solutions Zl and z2 approximate solutions of the differential

equations; the characteristic solutions zs and z4 are local. The discrete scheme (5.30) is stable. The

coefficients Ck are found by substituting the general solution into (5.32).

5.3. Scheme # 3. A factorizable scheme corresponding to (4.4) is defined as

(5.38) L(h3)q(3) = fh,

(5.39) L(h3)= 0 _0 _ --PT)h ,

pc2 0 c 1 (tO d
(uh) (,1,jh,)q(3) _-- _h , fh _-- 0 ,

ph

(5.40) /)h = 5rh _ [_20_0a _ c2 (0c)2),
/ \

and the desired discrete full-potential operator is given by

(5.41) 5rh = (_2 _ c2)0_0a.

The overspecified boundary conditions, where values of (t_l,_h (tO_h, (tN,_h (tN+I'P--I'PO_h -h -h,pN,_h and phN+ 1 are

specified from the exact differential solution (5.5), and _h_ 1 = _0 h = _hN = _hN+ 1 = 0, are equivalent to the

following six boundary conditions:

(i) u0 =
1 ,qc_h

(ii) fi0_u h + _, /J1 : fl(h),

(iii) _0_ h - T)hp h = O,
(5.42)

(iv) fi0_¢ h -- :Dhp h = O,

(V) pc2Oc?thN_ 1 + ChN_ 1 + _tOdphN_l :/2(1 - h),

(vi) phN = Cpe ic_.

In evaluation of (v), the value of _hN_ 1 is computed from the equation _0U_hN_l -- _hphN_ 1 ----0.

A particular solution of the nonhomogeneous problem can be found as

(5.43)

where

(5.44)

(z2(3) )
a(z) _(3) " "-xpar z ¢ _wy ,

/_(3)

_(3) 1 (/1 -- _ [--PC20_(e_)fl+ztO_(e_)f2 _)

_(3) z)_(__) (-p_o2_)/_+_o_(_)A_--_ _ /'

= j:h(e_ )

11



The generalized symbols 0_(A), 0c(A), and 0d(A) are defined in (5.23) and

(5.45)
7h(A) = (_2_ C2)0_(A)0_(A),

(( )) c2(1 1 )./)h(A)= c 2 0_(A)) 2-0_(A)0d(A =h= X_--4 x+6-4A+A 2

The six linearly independent characteristic solutions, Zk(j) = Vk(j)A_, are given by

(1) (jh(5.46) Vl = 0 ,v2 = 0 , and v3 = pc2 _ - 1

0 1 -jhp_t

which corresponds to A1,2, 3 : 1,

V 4 z

(5.47) and

(h)(h)- pc2 hOC (A4 ) = 4-pc2

0 30

( c2hjh /() c2V 5 z _-/u2cqa()_5)O_()_5)cqc()_5) -Sc(A5)-jOC(A5)) z (-2_- 5 -4-j 43] ,

-npu oc (_,5)

which corresponds to A4,5 1 1 1 1 1 1= 5, where cO_(A) = g (21 - V) and 5_(A) = _ (gX + 1A);

and

(h) (h)(5.48) vs = (A6) -N -pc2hOC(A6) = (A6)-N 4 2-_pc

-npu_"-°_(_) -h _p_t

which corresponds to As = 3. The characteristic solutions are normalized to satisfy max [Zk(j)[ = 0(1) for
3

h tending to zero.

5.4. Scheme _ 4. Another factorizable scheme belonging to the family (4.4) is defined as

(5.49) L(h4)q(4) _-- fh,

where L (4) is similar to L (s) with the desired discretization for the full-potential factor given as

(5.50) _rh (_2 2 h= - c )0_,

where 0h_ is a three-point central second-order accurate approximation to the second derivative. The vector-

function q(4) is defined similar to q(3).

A particular solution can be found in the form of (5.43) and (5.44) with the generalized symbols

,_'h(A ) = (_2 __ C2)c')hx(A) = _X__2_4_A_2-c2[1 ),
(5.51)

_(A) = 7_(A) - (_0_(A)0_(A) - C2(02A))D•

The "maximal-length footprint" stencil of the L(h4) determinant operator computed before any cancella-

tion occur includes seven points. Based on this stencil, the corresponding characteristic equation is formed

as

(5.52) _(_2 __C2) ( _4 1 1 1 )_ 0 +_-6_+12X-10+3A+0A 2 =0.

12



For the characteristic equation, zero coefficients in the leRmost positions imply zero roots, and, in the

rightmost positions, they imply infinite roots. Six roots of equation (5.52) are _1,2,3 = 1, )t 4 1= 7' _5 = 0,

and _6 = oc.

The solution representation as a linear combination of the functions Zk = Vk_ is relevant only for finite

_k y6 0. For _k = 0, the corresponding characteristic solutions are localized at the inflow boundary, i.e., they

exhibit nonzero values at the inflow and are zero in the interior and at the outflow boundary. By analogy,

characteristic solutions which corresponds to _k = oc are localized at the outflow boundary, i.e., they are

nonzero only at some locations in the vicinity of the outflow boundary.

Four linearly independent characteristic solutions which corresponds to finite (nonzero) _k can be found

(0), v2 = 0 , and V 3 =

1

in the usual form zk(j) = Vk$_.

(1)(5.53) Vl z 0

0

correspond to _1,2,3 = 1, and

(jh)p( 2-c2)
-j hp(t

(h)(h)(5.54) V4 = -hpc20C(/_4) = 4pc2

0 30

1
corresponds to _4 = 5"

The characteristic solution z5 localized at the inflow (i.e., corresponding to _5 = 0) is

(5.55) z5(J) = /_/13_2_-C22 (_j1 ,

p(th 61

and the characteristic solution z6 localized at the outflow (i.e., corresponding to A6 = oc) is

(5.56) hC_1 )
D 3'/_2-_- C 2 _N--2z6(j)= ,
-3p_th 5N

where

f 0, if rn#j,
(5.57) _= [ 1, if m=j.

Coefficients Ck, k = 1,..., 6 can be found by substituting the general solution into the boundary condition

equations that are similar to (5.42) with discretization _)h (5.40) corresponding to _Fh defined in (5.50).

5.5. Discretization Errors. In this section, the L_ norms of discretization errors in p for Schemes # 1

through # 4 are compared for the constant-coefficient problems corresponding to different Mach numbers

(M = 0.01, 0.5, 0.99, and M* = _13/_/_ _ 0.88). The value of M* has been chosen to illustrate an erratic
V 41

convergence history for the Scheme # 1. More details are given in Appendix A. The constant coefficients

nondimensionalized with respect to the density and the speed of sound at the sonic conditions are defined as

c =
(5.58) Vl_+ M23'21 '

p = c_-_,

(t = cM,

13
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FIe. 5.1. L_ norms of discretization errors in pressure.

where 3, = 1.4. The parameters of the exact differential solution defined on the interval x E [0, 1] have been

chosen as Cu -- 1, Cp -- 2, and (_ -- 7?:. The L_ norms of discretization errors in pressure, p, plotted on

Figure 5.1 have been computed for solutions on a sequence of uniform grids with h -- 2 -4, 2-5,..., 2 -15.

For low to medium subsonic Mach numbers, the discretization errors of the new factorizable schemes

(# 3 and # 4) are very competitive with the discretization errors of standard schemes (# 1 and # 2) on

all the grids. In this range of Mach numbers, the discretization errors of Scheme #4 are smaller than the

discretization errors of Scheme #3. The discretization accuracy of Scheme # 3 differs from the accuracy of

Scheme # 4 because of the difference in the five-point and three-point approximations to the full-potential

factor. The differences vanish as the Mach number tends to unity because the contribution of the full-

potential factor becomes negligible.

For subsonic Mach numbers approaching unity, the characteristic-upwinding Scheme # 2 is obviously

superior, exhibiting discretization errors that are nearly two orders of magnitude smaller that the discretiza-

tion errors achieved by other schemes on the same grids. Although not shown in the figures, the situation is

similar for errors in velocity at Mach numbers approaching zero. Scheme # 2 in one dimension is very close

to ideal because the entire system can be cast as three scalar convection equations. A standard dimension-

14



by-dimension extension to multiple dimensions loses this property as well as the more fundamental property

of discrete factorizability. Thus, in multiple dimensions, the new factorizable schemes proposed in this paper

are expected to offer comparable accuracy and considerable improvements in efficiency.

As shown in Figure 5.1, convergence of discretization errors for Scheme # 1 may be very erratic. This

behavior is explained by presence of the spurious global solutions. In particular, the choice of the Mach

number M = M* corresponds to the spurious solutions varying as e4-i_ j. A pattern of discretization error

increases on each fourth grid is notable in the test with M = M*. Analysis performed in Appendix A

confirms that the discretization error convergence rates for this scheme do not settle to any particular value.

The mean convergence, however, obeys the order property. The convergence rate pattern is dictated by

the characteristic frequency of the spurious solutions. The new factorizable schemes overcome this disorder

and exhibit monotonic convergence rates with an asymptote determined by the approximation order of the

discretizations in the interior.

Another interesting feature associated with the new factorizable schemes is the asymptotic behavior of

the auxiliary discrete function _h. The amplitude of this function is O(h) in some O(h)-small neighborhoods

of the boundaries and decreases exponentially quickly to O(h2)-size in the interior. This behavior does not

compromise the second-order accuracy in the physical variables u h and ph. It is explained by interactions

of the interior discretizations with the overspecified boundary conditions. The amplitude of _h becomes

uniformly O(h2)-small if another set of boundary conditions that better suit the interior discretizations is

applied.

6. Multlgrld Method. An FMG algorithm solves the target-grid equations proceeding from the coars-

est grid to finer grids. The goal of the algorithm is fast reduction of the current-grid algebraic errors below

the level of discretization errors, before interpolating solutions to the next finer grid. The algebraic errors

on a given grid, which are defined as the differences between the approximate and exact discrete solutions,

are reduced through a Full Approximation Scheme (FAS) [3, 4, 13, 22, 26, 27] multigrid cycle, in which

corrections to the fine-grid nonlinear equations are obtained from coarser grid solutions. The FMG-FAS

method is described below by means of a two-grid notation, in which the fine grid is denoted by superscript

h and the coarse grid by superscript 2h.

Let the fine-grid nonlinear equations be defined as

(6.1) Rh(qh) = fh,

The initial fine-grid solution approximation qh is prolonged from the coarse-grid solutions q2h, as

(6.2) qh _--73 q2h,

where 73 denotes a prolongation operator used by the FMG algorithm for solution interpolation; the "hat"

notation is applied to distinguish from the prolongation operator 7) used within FAS multigrid cycles for

interpolation of coarse-grid corrections. After forming the initial fine-grid solution approximation qh, a two-

level FAS multigrid cycle is applied as following: Several (or perhaps one or even zero) relaxation sweeps

are applied to the fine-grid equations to obtain an improved solution approximation _Ih. The coarse-grid

equations at level 2h to be solved for corrections to _Ih are defined as

(6.3) R2h(q2h) = R2h(_r_lh ) ____(fh _ Rh(_lh)),

where 7_ and 7_ denote restriction operators for transferring the fine-grid solutions and residuals to the coarse

grid, respectively. These coarse-grid equations are then solved by some iterative method (or directly if the
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gridiscoarseenough).Thecorrectionsfromthecoarse-grid(grid2h)solutionsareprolongedto thefine
gridas

(6.4) _1h = _1h + 7)(q 2h - 7_lh).

Several relaxation sweeps follow the coarse-grid correction interpolation to complete one FAS multigrid cycle.

_2h,, (

_4h,, (

_":

FV(v 1,v2) Cycle

4-levels _/_

F_C. 6.1. Schematic of the _-level FV(pl,P2) cycle, where _o denotes the number of relaxation sweeps on the coarsest

mesh and _h denotes the grid with mesh spacing h.

In multilevel versions of the FAS cycle, the coarse-grid equations are themselves solved with 7 cycles of

the algorithm applied recursively, where 7 = 1 would correspond to a V cycle and 7 = 2 to a W cycle. In our

numerical tests, a version of the V cycle, termed FV(pl, P2) cycle, is used. The multilevel FV(pl, P2) cycle

has been employed earlier in [24] and is derived from the target-grid two-level FAS cycle described above by

applying a multilevel FMG algorithm with the V(pl, P2) cycle to solve the coarse-grid equations. Parameters

Pl and P2 denote the number of relaxation sweeps on the downward and upward legs of the cycle. The cycle

is sketched in Figure 6.1.

The distributed relaxation method has been applied as described in Sections 3 and 4. The notations Lh

and Mh are used below for the principal linearization of the operator R h of (6.1) and the corresponding

distribution matrix, respectively. The values of auxiliary variables (_wh have been overspecified outside of the

computational domain by zeros wherever it is necessary. The convection operators in the LhMh matrix have

been solved by downstream marching. The full-potential operator has been relaxed with downstream Gauss-

Seidel relaxation sweeps. The inter-grid transfer operators are the following: The prolongation operators,

7_ and 7), are the second-order symmetric linear interpolations of the primitive-variable corrections. The

operator 7_ restricting residuals is the second-order full-weighting operator. The solution-restriction operator

7_ is the injection operator.

7. Numerical Tests. The results of numerical solutions of nonlinear nonconservative equations corre-

sponding to quasi-one-dimensional subsonic flow in a convergent-divergent channel are reported in this sec-

tion. The differential equations are (5.1) with x E [0, 1] and the area distribution term a(x) = 1 -0.8x(1 -x)
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(7.1)

Two factorizable discrete schemes approximating (5.1) are tested

h
where aj = a(jh), and

h h
_)1 Pj

(7.2) or

h h
192Pj

h

h_u_ h (_/--1)ej .Qc_h

pj 3
?th_u./.h h h

ju Wj --19 pj

h c h h _ h_d-h
_/pjO Uj + ¢j + (tju pj

(_ h c h _ h_u_h--1)ejO Uj + _ju _j

= 0,

z 0_

h h o_ah

: --'Tpjuj ah ,

-" h h o_ ah
= -(_-l)cjuj _ ,

_/(_/--1) eh h h h h
-- h 2 (Pj--2 -- 4pj--1 -'_ 6 -- 4pj+I -'_ Pj+2)

-- 3 (uh)2+_/(_/--1)eh_ _'l_j(_h--2 -- 4pjh_ 1 -_- 6 -- 4Ph+l + Pj+2h ).

TABLE 7.1

The L2-norm of discretization errors in p and the ratio of algebraic-to-discretization errors for the FMG-1 solver with

FV(2,2) cycles.

1/32 0.6721x10 -3

1/64 0.1441x10 -3

1/128 0.3579x10 -4

1/256 0.8374x10 -5

1/512 0.2098x10 -5

5-pt 3-pt

Ileall/lleall : p Ileall :p Ileall/lleall :p

0.004 0.3343x10 -3 0.03

0.02 0.8585x10 -4 0.01

0.02 0.2153x10 -4 0.01

0.02 0.5391x10 -5 0.01

0.01 0.1350x10 -5 0.01

The principal linearization operator and the distribution matrix used in distributed relaxation are one-

dimensional versions of (4.4) and (4.5). The discrete equations are solved with an FMG-1 algorithm em-

ploying one FV(2, 2) cycle on each grid. The coarsest grid corresponds to h -- 1/16. The discrete boundary
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conditions are overspecified on each grid from the exact differential solution of the fully subsonic flow prob-

lem with the inflow Mach number M = 0.5. The maximum discretization errors versus mesh size shown in

Figure 7.1 demonstrate the second-order spatial convergence. In Table 7.1, the ratios of the algebraic error

in the L2-norm to the discretization error in this norm for the FMG-1 algorithm are quite small at each grid.

The complexity of this solver is about 30 minimal work units, where a minimal work unit is defined as the

number of operations required for one target-grid residual evaluation. The number is relatively large as is

typical for one dimension; in two dimensions the complexity of this algorithm would be about 9.3 minimal

work units, representing TME according to the definition given at the beginning of the paper.

The residual convergence history versus FV(2,2) multigrid cycles are shown in Figure 7.2. The equations

are numbered according to (7.1). The convergence rates are grid-independent and are roughly one order of

magnitude per cycle. The discretization with the three-point full-potential factor shows slightly better

convergence rates, although, the rates are slightly slower than the asymptotic convergence rate expected

if solving only the scalar three-point full-potential equation. Although not shown, the convergence rates

somewhat deteriorate when a multigrid V cycle is used instead of the FV cycle.

1o2

lO0
G9

\ h=1/64 / h=1/128 /h=1/256 "_
"0

E

1st Equation

1°_° 2 nd Equation

3rdEquation
10_2 4 th Equation

0 5 10 15 20

Multigrid FV(2,2) Cycles

(a) 5-pt full-potential discretization

/ h = 1/128

25 0 5 10 15 20 25

Multigrid FV(2,2) Cycles

(b) 3-pt full-potential discretization.

FIe. 7.2. Residual convergence for the FMG algorithm with five FV(2,2) multigrid cycles at each grid level for the

nonconservative equations (?'.1).

8. Concluding Remarks. A multigrid method is defined as having textbook multigrid efficiency

(TME) if solutions to the governing system of equations are attained in a computational work that is a

small (less than 10) multiple of the operation count in one target-grid residual evaluation. A way to achieve

TME for the Navier-Stokes equations is to apply the distributed relaxation method separating the elliptic

and hyperbolic partitions of the equations. Design of a distributed relaxation scheme for the Navier-Stokes

systems can be significantly simplified if the target discretization possesses two properties: (1) factorizability

and (2) consistent approximations for scalar factors.

The paper has introduced a new family of factorizable discrete schemes for the multidimensional Eu-

ler equations. The schemes include a mechanism that allows one to obtain any desired discretization for

the full-potential factor of the system determinant without compromising the scheme factorizability. This

property opens the door for applying the distributed relaxation technique leading to TME in complicated

computational fluid dynamics simulations.
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The accuracy of the new schemes has been analyzed, compared with the accuracy of standard schemes,

and found competitive. TME and fast grid-independent residual convergence rates have been demonstrated

in solution of fully subsonic quasi-one-dimensional flow in a convergent/divergent channel.

Appendix A. Erratic Convergence of Baslc-Scheme Discretlzatlon Errors.

In this appendix, an analysis of discretization errors for the basic scheme (5.20) is presented. This

analysis explains both the erratic convergence rates and the mean second-order convergence exhibited by

the discretization errors.

Taking the exact solution (5.5) of the differential problem as a Fourier component guarantees that the

particular solution (5.24) is a second-order accurate approximation, and that the differences between the

solutions converge asymptotically monotonically. Thus, a deviation from the monotonic convergence may

occur only because of coefficients Ck,k ---- I,...,4, of the characteristic solutions Zk to the homogeneous

problem. For the set of overspecified boundary conditions (5.29), the coefficients Ck are found as

(A.1)

where

(A.2) T---

Cl

C2

C3

C4

(hi/__--T_ 1 b2
b3 '

54

1 0 1

2 2p c( )

pc 2 _t {pc 2 + Pu2(--23-+2)_3)0_()_3)_ AN-1

2 2 - \_ oo(_,3) J
0 1 AN

1 //3_ o_ a_0_(_4)

_P C2 _)0 (_4) / '-- \2_44 -_- p_2(__ _ A N-1

A4

(A.3) /hi/(52 _-

b3

54

Cu __ ?_(1) x

2 (Cu-_t(1)) C-iw -}- 2_ (Cp -_(1)) J( P_ (C u _ ?_(1))+ 2 (Cp __(1))¢iw)¢iNw '

and A3, A4, ?_(1), and _(1) are defined in Section 5.1.

All the values bk converge to zero with second-order rates, and this provides a mean second-order

convergence for discretization errors. The determinant of T is a linear combination of some integer powers

(between -N and N) of A3. (Recall, that A 4 z A31.) The sequence AN = e iN¢ does not converge to any

value as N tends to infinity -- rather it orbits the unit circle with the frequency determined by ¢; ¢, in

turn, is controlled by the Mach number. Therefore, the determinant of T is also oscillatory. Theoretically,

one could construct a set of boundary conditions and choose the Mach number so that T degenerates on a

particular grid. The discrete problem on this grid would become ill posed. Further grid refinement would

unavoidably result in repeating (or closely approaching) ill-posedness on an infinite number of grids. For

overspecified boundary conditions, we did not find a Mach number and a grid to enforce the degeneration of

the matrix T. However, significant variations of the absolute value of the determinant have been observed.

Figure A.1 presents a convergence history (circle symbols) for the Loo norms of discretization errors in

pressure. The parameters of the exact solution have been chosen as C_ = 1, Cp = 2, a = 77r. The Mach
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Fie. A.1. Loo norms of discretization errors (circles) and the history of the determinant of T(triangles) for the basic
discrete scheme with the overspecified boundary conditions.

number,

/

,/5t 2 + 8 + 8v@-+ 1
(A.4) M* V 25t 2 + 16 '

with t = tan(0), corresponds to 0 = 7r/4. The number of grid points has been gradually increased (by 1)

rather than doubled in passing to the next fine grid. For comparison, Figure A.1 exhibits the history of the

determinant of T (triangle symbols) as well. The discretization errors do not converge monotonically. Spikes

of large discretization errors occur periodically, closely following the pattern of the determinant T behavior:

smaller determinant values correspond to larger discretization errors. A mean second-order convergence rate

is observed.
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